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Stochastic differential equations for infinite
particle systems of jump types with long

range interactions

Syota Esaki*(Kyushu University),
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In this talk we study infinite particle systems with interactions in which each particle
is undergoing the jump type process on R? with rate function p,(y) = p(|z — y|) from =z

to y satisfying conditions (p.1)—(p.2):
(p.1) p(r) = O(r~@+)) as r — oo for some a > 0.
(p-2) p(r) = O(r= @A) as r — 40 for some 0 < 3 < 2.

Our theorems can be applied to the systems with Dyson, Ginibre, Airy and Bessel
interactions. In particular, we can give the SDE representations for the interacting a-
stable particle systems for any a € (k,2), where & is the growth order of the density (the
l-correlation function) of u, that is, p'(z) = O(|z]), |z| — cc.

Suppose that a state space is d-dimensional Euclidian space R?. Then the configuration
space is represented as 9 = {f = >, 02, E(K) < oo for all compact sets K C Rd}, where
0, stands for the delta measure at a. We endow 91 with the vague topology. Then 9T is
a Polish space. For z,y € R and £ € M, we write £ = ¢ — 0, + 0§, and £\ @ =& — 6, if
§({ah) > 1.

Let p be a probability measure on 9, which describes an equilibrium measure for the

system. We consider a Dirichlet form € defined by

&) =5 [ wa9) [ ) [ paatae) - 1y

with some positive measurable function p on R? x R?, which is a jump rate satisfying the
above condition (p.1)—(p.2). Under suitable assumptions we can construct the associated

unlabeled particle system by using the Dirichlet form technique [1].
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In this talk, we give the ISDE representations for the unlabeled particle systems by
generalizing the method in [2]. We introduce the rate function given by ¢(§, x;y) = 0 if

§({z}) =0, and

ct6oai) = e —ol) (14 P2 05D ire)) 21

Here, p, is the reduced Palm measure defined by p, = p (- — 8,|E({z}) > 1) for z € RY,
p'(x) is the 1-correlation function of u and dpu,/du, is the Radon-Nikodym derivative of
p,, with respect to p,. Then the labeled process (X;(t));en solves the following ISDE:

t 00
X;(t) = X;(0) +/ / / ua (u,r, Xj(s—),z(sxi(s_)) N;(dsdudr), (1)
o JraJo oy
where a(u,r,z,§) = 1(0<r <c(z;x+u)), and N;, j € N are independent Poisson
random point fields on [0,00) x R? x [0,00) whose intensity measure is the Lebesgue
measure dsdudr.
We also discuss the uniqueness of solutions of ISDE (1) by applying the argument in

[3], where systems of interacting Brownian motions are studied.
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